

# Math 451: Introduction to General Topology

## Lecture 6

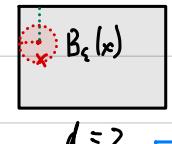
### Examples (continued).

(b) In  $(\mathbb{R}^d, d_2)$  all open rectangles are open sets, where an open rectangle is a set of the form  $I_1 \times I_2 \times \dots \times I_d$ , where each  $I_k \subseteq \mathbb{R}$  is an open interval.

Proof. For  $x \in R := I_1 \times I_2 \times \dots \times I_d$ , we see that each coordinate  $x_k \in I_k$ ,

let  $\varepsilon_k > 0$  be such that  $(x_k - \varepsilon_k, x_k + \varepsilon_k) \subseteq I_k$ . Set  $\varepsilon := \min_{1 \leq k \leq d} \varepsilon_k$ ,

then  $B_\varepsilon(x) \subseteq R$ .



QED

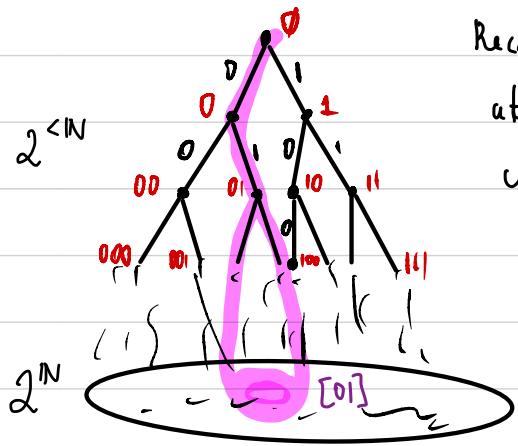
(c) Let  $\Sigma$  be a ctbl nonempty set and  $X := \Sigma^{\mathbb{N}}$  with the "realtors" metric, defined previously.

Recall that every cylinder  $[w]$ , for  $w \in \Sigma^{<\mathbb{N}}$ , is an open ball at any  $x \in \Sigma^{\mathbb{N}}$  that extends  $w$  (write  $x \succ w$ ), and also a closed ball at  $x$ . In particular,  $[w]$  is open.

Claim.  $[w]$  is also closed.

Proof. Let  $n := lh(w)$ . Then  $[w]^c = \bigcup_{\substack{v \in \Sigma^{<\mathbb{N}} \\ v \neq w}} [v]$  hence  $[w]^c$  is open being a union of open  $v \in [v]$  sets. Hence  $[w]$  is closed.

QED



Thus every cylinder is clopen, i.e. closed and open.

Obs. For any cylinders  $[w]$  and  $[v]$ , they are either disjoint or one is contained in the other.

Proof. If the word  $w \succ v$  then  $[w] \subseteq [v]$ . If  $w \not\succ v$  and  $v \succ w$ , then  $\exists i < lh(w), lh(v)$  with  $w(i) \neq v(i)$ , hence  $[w] \cap [v] = \emptyset$ .

□

Prop. Every open set in  $\Sigma^{\mathbb{N}}$  is a ctbl union of disjoint cylinders.

Proof. Let  $U \subseteq \Sigma^{\mathbb{N}}$  be open. Take  $W := \{w \in \Sigma^{<\mathbb{N}} : [w] \subseteq U \text{ and } \nexists \text{ shorter } v \succ w \text{ with } [v] \subseteq U\}$ . Clearly for any two distinct  $w_1, w_2 \in W$ , we have  $w_1 \not\succ w_2$  and  $w_2 \not\succ w_1$ , so  $[w_1] \cap [w_2] = \emptyset$ . Thus it suffices to show that  $U = \bigcup_{w \in W} [w]$ .

because  $W \subseteq \sum^{<\mathbb{N}} = \bigcup_{n \in \mathbb{N}} \sum^n$  is ctbl. By def.  $\bigcup \{w\} \subseteq U$ . To show the converse, fix  $x \in U$ . Then  $\exists$  open ball,  $w \in W$  namely a cylinder  $[v]$ , s.t.  $x \in [v] \subseteq U$ . Let  $u \sim v$  be the shortest s.t.  $\{u\} \subseteq U$ . Then  $u \in W$ , so  $x \in \bigcup_{w \in W} \{w\}$ . QED

Prop. Let  $(X, d)$  be a metric space and  $Y \subseteq X$ . Then the open sets in the subspace  $(Y, d)$  are exactly sets of the form  $U \cap Y$  where  $U \subseteq X$  is an open set in  $(X, d)$ .

Proof. HW

### Examples.

Let  $X := \mathbb{R}$  with the usual metric  $d$ .

(a) If  $Y = [0, 1]$ , then  $(\frac{1}{2}, 1]$  is open in the subspace  $(Y, d)$ , in fact it is the open ball at 1 of radius  $\frac{1}{2}$ .

(b) If  $Y = \{0, 1\} \cup \{2\}$ , then  $\{2\}$  is open in the subspace  $(Y, d)$ , in fact  $\{2\} = B_{\frac{1}{2}}^Y(2)$ .

$\{2\}$  is closed in  $Y$  because  $Y \setminus \{2\} = \{0, 1\}$  is open since  $\{0, 1\} = (-\frac{1}{2}, \frac{3}{2}) \cap Y$ .

### Limits of sequences in metric spaces.

Recall that a sequence  $(x_n)$  is just a function with domain  $\mathbb{N}$ .

Def. For a subset  $P \subseteq \mathbb{N}$ , we write:

o  $\forall^{\infty} n \in \mathbb{N} \ n \in P$  if all but finitely many  $n \in \mathbb{N}$  are in  $P$ .

Equivalently,  $\exists k \in \mathbb{N} \ \forall n \geq k \ n \in P$ , i.e. eventually  $x_n \in P$ .

Thus,  $\forall^{\infty} n = \exists k \in \mathbb{N} \ \forall n \geq k$ .

o  $\exists^{\infty} n \in \mathbb{N} \ n \in P$  if there are infinitely many  $n$  in  $P$ , i.e.  $P$  is infinite.

Equivalently,  $\forall k \in \mathbb{N} \ \exists n \geq k \ n \in P$ .

Thus,  $\exists^{\infty} n = \forall k \in \mathbb{N} \ \exists n \geq k$ .

Obs.  $(\text{not } \forall \infty_{n \in \mathbb{N}} n \in P) = \exists \infty_{n \in \mathbb{N}} n \notin P.$

 $(\text{not } \exists \infty_{n \in \mathbb{N}} n \in P) = \forall \infty_{n \in \mathbb{N}} n \notin P.$

Def. Let  $(X, d)$  be a metric space,  $(x_n) \subseteq X$  be a sequence, and  $x \in X$ . We say that  $(x_n)$  converges to  $x$ , and write  $\lim_{n \rightarrow \infty} x_n = x$ , if  $\forall \epsilon > 0 \ \exists N \in \mathbb{N} \ \forall n > N \ d(x, x_n) < \epsilon$ .

In other words, for every open ball  $B$  at  $x$ , for all but finitely many  $n$ ,  $x_n \in B$ .

Prop. Let  $(X, d)$  be a metric space,  $(x_n) \subseteq X$  be a sequence, and  $x \in X$ . TFAE:

(1)  $\lim_{n \rightarrow \infty} x_n = x$ , i.e. for every open ball at  $x$ ,  $\forall \infty_n x_n \in B$ .

(2)  $\forall$  open  $U \ni x$ ,  $\forall \infty_n x_n \in U$ . This is the "correct" definition of convergence.

(3)  $\lim_{n \rightarrow \infty} d(x_n, x) = 0$ .

Proof. (1)  $\Leftrightarrow$  (3) is a chasing-definitions proof. HW

(2)  $\Rightarrow$  (1) is trivial since open balls are open sets.

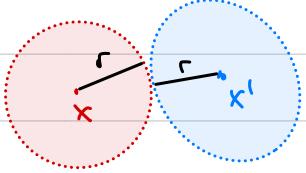
(1)  $\Rightarrow$  (2). Let  $U \ni x$  be open. Then there is a ball  $B$  at  $x$  with  $B \subseteq U$ . But then by (1),  $\forall \infty_n x_n \in B \subseteq U$ . QED

Prop (uniqueness of limit). Let  $(X, d)$  be a metric space and  $(x_n) \subseteq X$  be a sequence.

Then the limit of  $(x_n)$ , if exists, is unique, i.e. for all  $x, x' \in X$  if  $\lim_n x_n = x$  and  $\lim_n x_n = x'$  then  $x = x'$ .

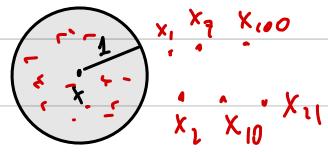
Proof. Let  $x \neq x'$  and suppose that  $\lim_n x_n = x$ . We show that  $\lim_n x_n \neq x'$ .

Since  $x \neq x'$ ,  $d(x, x') > 0$  so take  $r := \frac{1}{2} d(x, x')$ . Then  $B_r(x) \cap B_r(x') = \emptyset$ . But  $\forall \infty_n x_n \in B_r(x)$  hence  $\forall \infty_n x_n \notin B_r(x')$ , in particular, not  $\forall \infty_n x_n \in B_r(x')$ . QED



Obs. In a metric space  $(X, d)$ , if a sequence  $(x_n)$  converges then it is bounded, i.e.  $\{x_n\}$  is contained in some ball.

Proof. Let  $(x_n)$  converge to some  $x \in X$ . Then  $\forall \epsilon \in \mathbb{Q}^+$   $\exists N \in \mathbb{N}$   $\forall n \geq N$   $x_n \in B_\epsilon(x)$ .



Let  $Y = \{x_n : x_n \in B_\epsilon(x)\}$ , so  $Y$  is finite.

Let  $r := \max_{y \in Y} d(x, y)$ . Then  $Y \subseteq B_{r+1}(x)$  but also  $\{x_n : x_n \in Y\} \subseteq B_\epsilon(x) \subseteq B_{r+1}(x)$ ,

so  $\{x_n\} \subseteq B_{r+1}(x)$ .

QED

### Examples.

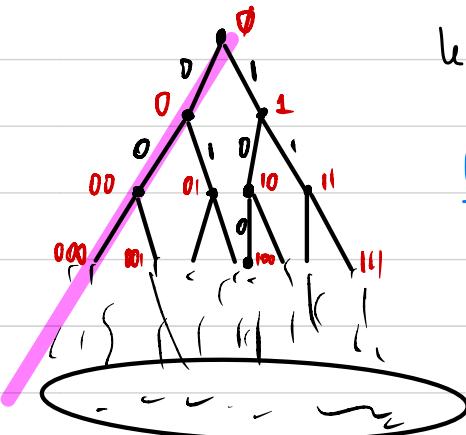
(a) Let  $X$  be set and  $d$  be 0-1 metric on it, i.e.  $d(x, y) = \begin{cases} 1 & \text{if } x \neq y \\ 0 & \text{if } x = y \end{cases}$ .

For a sequence  $(x_n)$  and  $x \in X$ ,

$$\lim_n x_n = x \iff \forall \epsilon \in \mathbb{Q}^+ \exists N \in \mathbb{N} \forall n \geq N x_n = x.$$

(b) Let  $X = \sum^N$  for some ctbl nonempty  $\Sigma$ , with the usual metric  $d$ .

$$\text{Let } x_n := 0^n 1^\infty = \underbrace{00 \dots 0}_{n} 111 \dots$$



Claim.  $\lim_n x_n = 0^\infty$ .

Proof. Indeed, every ball at  $0^\infty$  is of the form  $[0^k]$  for some  $k \in \mathbb{N}$  and  $\forall n \geq k$ ,  $x_n = 0^n 111 \dots \in [0^k]$ .

QED

More generally, the following is true:

Prop. A sequence  $(x_n) \in \sum^N$  converges to  $x \in \sum^N \iff \text{for each index } i \in \mathbb{N}$

Proof. HW

$$\forall \epsilon \in \mathbb{Q}^+ \exists N \in \mathbb{N} \forall n \geq N x_n(i) = x(i).$$